Spatial variation in sensitivity of serotinuous Proteaceae to wildflower harvesting inferred from large-scale demographic data in the Cape Floristic Region

FYNBOS FORUM, AUGUST 2017

by Martina Treurnicht

Supervisors: Frank M. Schurr, Jörn Pagel, Karen J. Esler & Jasper A. Slingsby
The fire-driven life cycle of serotinous Proteaceae

Introduction and background:

Collected demographic data for 26 study species

>3400 population-level records across the CFR
Introduction and background:

Range-wide demographic variation

*considerable inter- and intraspecific variation in fecundity and recruitment

Are population growth rates always positive... everywhere?

Introduction and background:

Pagel et al. (in prep.)
Wildflower harvesting of serotinous Proteaceae in the CFR

Can large-scale demographic data be useful to conservation?

- **Aim**: to investigate the effects of harvesting (i.e. reduction of the canopy seed bank) across environmental variation on the population viability of 26 serotinous Proteaceae

 - With specific reference to the “50% harvesting rule” *universally* applied to all species (and populations)

- The effects of wildflower harvesting are currently inconclusive:

 i. studies using different estimates of demographic parameters, different models of population dynamics and spatial extent of investigations

 ii. Only 7 serotinous *Proteaceae* species partly studied to date…

 - Maze & Bond (1996): *P. repens, P. neriifolia*
 - Cabral et al. (2011): *P. repens, P. neriifolia and P. compacta*
Research approach:

Population Viability Approach: data requirements

- **PVA:** combine environmental- and demographic data with a population dynamic model to simulate the effects of harvesting as a proportional reduction of seeds in the canopy seed bank over time.

Data requirements:

- **Environmental data**
 - Climate, fire interval and soil nutrient data (*Schulze 2007; Wilson et al. 2015*)

- **Demographic data**

- **Population dynamic model**

Simulation:

Simulate effects of harvesting to compare two scenarios: 0% and 50%.
Prediction of demographic rates (per generation)

Statistical demographic model:
- Fecundity
- Recruitment
- Adult fire survival
- Prob. of reproductive maturity

Model assumptions:
\[T_{\text{max}} = 100000 \text{ years} \]
\[N(0) = 1000 \text{ plants} \]
\[A = 10000 \text{ m}^2 \]

Local population dynamics
- Simulated per generation; length of fire interval
- Length of the next fire interval from likelihood distribution; \textit{Wilson et al. 2015}
- Site-specific environmental data (climate, fire interval and soil fertility)

Stochastic simulation model:
- Adult fire survival
- Fecundity
- Recruitment
- Seed harvest

Next time step \((g)\)

if the local population is ‘extinct’, time to extinction (years) in response to different harvesting rates is recorded
Research approach:

Model simulation

- Simulations for *P. repens* to wildflower harvesting
- Stochastic simulations with a random sequence of fire intervals causing fluctuations in populations size until the population goes “extinct”
Research approach:

Model simulation

- Simulations for *P. repens* to wildflower harvesting
- Stochastic simulations with a random sequence of fire intervals causing strong fluctuations in populations size until the population goes extinct

![Graph showing population size over time with symbols indicating Tm(0%) and 0% harvesting: one population & multiple replications](image)
Model simulation

Research approach:

- Simulations for *P. repens* to wildflower harvesting
- Stochastic simulations with a random sequence of fire intervals causing strong fluctuations in populations size until the population goes extinct

![Graph showing population size over time with different harvesting rates](image-url)
Research approach:

Model simulation

- Simulations for *P. repens* to wildflower harvesting
- Stochastic simulations with a random sequence of fire intervals causing strong fluctuations in populations size until the population goes extinct

Graph showing population size over time with markers for 0% and 50% harvesting.
Research approach:

Model simulations

- Simulations for *P. repens* to wildflower harvesting
- Stochastic simulations with a random sequence of fire intervals causing strong fluctuations in populations size until the population goes extinct

Grimm & Wissel (2004)

Reduction of fecundity -> reduce population size -> increase extinction risk

\[
\begin{align*}
T_m(50\%) & \quad T_m(0\%) \\
\text{Reduction of fecundity} & \quad \text{increase extinction risk}
\end{align*}
\]

\[
\begin{align*}
P_{130}(0\%) & = 0.019 \\
P_{100}(50\%) & = 0.037
\end{align*}
\]
Research approach:

Model simulations

- Simulations for *P. repens* to wildflower harvesting
- **Population 2**: higher vulnerability to 50% harvesting than population 1
Results:

Sensitivity to harvesting from simulations

Proportions of populations (%) at ‘risk’ of 50% harvesting

Protea nerifolia

RISK CATEGORIES

HIGH >>> at least 50% within 10 years or three generations

INT >>> at least 20% within 20 years or five generations

LOW >>> at least 10% within 100 years
Results:

Variation in sensitivity to harvesting

Proportions of populations (%) at ‘risk’ of 50% harvesting

Protea neriifolia = 0% at risk

Leucadendron rubrum = ~1% at risk

Protea punctata = ~12% at high risk
Results:

Variation in sensitivity to harvesting

Proportions of populations (%) at ‘risk’ of 50% harvesting (n=19)
Results:

Spatial variation in sensitivity to harvesting

Proportions of populations (%) at ‘risk’ of 50% harvesting

$L.\ rubrum$

~1%
The relationship between sensitivity to harvesting and environmental variation?

Environmental variation in sensitivity to harvesting

Results:
Spatial variation in sensitivity to 50% harvesting (n=19)
- considerable variation among and within species
- sensitivity to harvesting tends to cluster along the edge of the species’ range & environmental limits (u-shaped responses)
- climate change will likely amplify effects of harvesting (?)

Take home message: caution against the application of a general management guideline (“50% harvesting rule”) applied across different species/populations and regions

Can this type of information be used to develop locally adapted and/or species-specific harvesting regimes?
- Donut. Or do nought?: How do we apply this in the “real world”??
Demographic, functional and macroevolutionary determinants of range dynamics and large-scale ecological niches in South African Proteaceae

The team

Frank Schurr
Jörn Pagel

Karen Esler
Jasper Slingsby
Many field assistants: Reinaert van der Merwe, Barbara Seele, Justine Rudman, Francois Burger, Sune Rossouw, Laura Hill, Kate Spies, Magali Justice, Robert Mwamba, Nombuso Ngubane, Elzanne Singels.

CapeNature and several private landowners for permission to study sites (Permit nr: 0028-AAA005-00213); SANParks (Agulhas National Park); Eastern Cape Parks & Tourism Agency; Richard Cowling (NMMU), Steffen Heelemann, William Bond (UCT), Suzaan Kritzinger-Klopper (CIB), Ismail Ebrahim (SANBI), Les Powrie (SANBI), Guy Midgley (SANBI), Jeremy Midgley (UCT).

Host institutions: South African Environmental Observation Network (SAEON, Fynbos Node), Department of Conservation Ecology (Stellenbosch University, RSA), the Institute of Landscape and Plant Ecology (University of Hohenheim, Germany), ISEM Metapopulation group (University of Montpellier II, France)
Introduction and background:

Spatial variation in demography

P. punctata

Fecundity
- Fire interval (a): partial $R^2 = 0.38$
- Population density: partial $R^2 = 0.07$

Recruitment
- Fire interval (a): partial $R^2 = 0.18$
- Soil moisture stress (% days): partial $R^2 = 0.04$